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Abstract

We study decision makers who willingly forgo decision rules that vary finely with available information,
even though these decision rules are technologically feasible. We model this behavior as a consequence of
using classical, frequentist methods to draw robust inferences from data. Coarse decision making then arises
to mitigate the problem of over-fitting the data. The resulting behavior tends to be biased towards simplicity:
decision makers choose models that are statistically simple, in a sense we make precise. In contrast to
existing approaches, the key determinant of the level of coarsening is the amount of data available to the
decision maker. The decision maker may choose a coarser decision rule as the stakes increase.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Despite the breadth of phenomena they explain, classical models of decision making struggle
with a large class of observed behavior we shall refer to as coarse decision making. By this
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we mean the phenomenon of decision makers making coarse choices—their choice does not
finely vary with the information they have, even though doing so would be informationally and
technologically feasible. They opt instead for decision rules that are less sensitive to state by state
variations—‘coarse’ rules in our terminology.

There is a large literature documenting and modeling manifestations of coarse decision mak-
ing, we limit ourselves here to a few motivating examples.2 The literature on bounded rationality
studies outcomes when decision makers use rules of thumb (or similar coarsenings such as deci-
sion heuristics, routines, and analogies).3 ‘Style investing’ investment strategies based on asset
categories or ‘styles’ rather than the assets themselves. The literature on rational inattention
in macroeconomics studies agents with limited or costly information processing capacity, and
therefore rationally choose to ignore some available information.

The goal of this paper is to provide a simple alternate theory of coarse decision making. The
central idea is to view decision makers as learning from data using classical/frequentist methods,
similar to empirical work. We study a setting where a decision maker must choose a decision
rule i.e. a mapping from observables to actions. He has relevant sample data to assist him in this
choice. We study a two-stage decision procedure:

1. Model-selection stage: Select a ‘model,’ or ‘decision frame’ F consisting of a set of decision
rules.

2. Inference stage: Select a rule f in F based on its fit with the sample data.

The decision maker balances two conflicting objectives: (1) A rich decision frame F improves
ability to ‘fit’ observed samples, but, (2) an unrestricted F results in ‘over-fitting’ the sample.
Coarseness of the decision frame F is the result of a compromise between these two concerns.4

The more common view of coarse decision making in the literature is that it is a consequence
of cognitive and computational limitations suffered by the agents. Our explanation, i.e. that it
results from difficulties of inference from limited data, is complementary to this view. In most
situations of interest, it is likely that agents have both limited cognition and limited data. We
focus here solely on the difficulties posed by learning from limited data because it generates
novel insights into the problem.

A first implication of our framework is that behavior will be biased towards statistically simple
rules, in a sense we make precise. In the case of categorization, the decision maker relies on a
coarse partition of the observables to counter the risk of selecting a rule that tracks the sample
data too closely (over-fitting). This leads to under-sensitivity to information: decision makers do
not respond to observable changes in signals that are finer than the coarse categories they have
selected.

A second implication of our framework is how coarseness of the decision frame varies with
the stakes for making the right decision. Decision makers for whom cognitive and computational
limitations are binding will likely invest more resources in relaxing these constraints as the stakes
increase. On the other hand, heuristics such as coarse categories may continue to be important
even in decisions with very large stakes. Our learning-based model implies that increasing the

2 A broader review of related work is in Section 5.1.
3 See Cremer et al. [6], Jehiel [16], Mohlin [18] and Samuelson [25], among others.
4 Although this tension is well-recognized in classical statistics, it has received little attention in the theory literature.

The closest paper is Al-Najjar [1] which studies the asymptotic properties of uniform learning, but does not discuss
over-fitting or applications to cognitive phenomena.
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stakes may lead to coarser categories (Proposition 2). A decision maker who categorizes for
learning-based reasons may not view cognitive or computational limitations as binding even
when the stakes are high. This has potentially observable implications in terms of the incentives
to invest in relaxing such constraints.

Third, our model allows a better understanding of the distinction between categorization and
incomplete information. Lack of information is an exogenous objective constraint, whereas cat-
egories in our model are ‘self-imposed’ by the decision maker. In the absence of incentive and
strategic motives, more information means more flexibility of choice, which cannot hurt and usu-
ally helps. By contrast, in Proposition 3 we show that refining the chosen categorization scheme
may make the decision maker worse off, since this could lead them to overfit their limited data.

A final implication of our model which we do not discuss in detail pertains to disagreements in
interpreting information and their persistence. There is substantial empirical evidence that ques-
tions the standard assumption that individuals agree on the interpretation of information—see
Kandel and Pearson [17], Cutler et al. [7], Hong and Stein [14] among many others. Coarse de-
cision making provides a potentially useful perspective on the problem of non-informational
sources of disagreement. Individuals with different categorization schemes will interpret the
same information differently, despite an accumulation of data and their knowledge of each other’s
model.

2. The setting

We consider a decision problem characterized by a set of observables or explanatory vari-
ables X, a set of outcomes Y , a set of actions A and a payoff function5:

u : Y × A →R.

For expository simplicity, we assume that X,Y and A are finite unless indicated otherwise.
We distinguish x (the observables) from y (the outcome). The choice of actions can be con-

ditioned on x, whereas y remains unobserved until after the action is chosen. A decision rule f

is a contingent action plan

f : X → A,

which determines an action f (x) as a function of the observables x. Let F denote the set of all
decision rules. To highlight issues connected with learning and statistical complexity, we assume
that the decision maker is free to choose any decision rule in F. This assumes away technological
or informational factors that may limit the choice within F.

An environment is a joint distribution P on X × Y —it is unknown to the decision maker. We
assume that, given P , a decision rule f is evaluated according to its expected payoff:

EP f ≡ EP u
(
y,f (x)

)
.

The decision maker has sample information to form an estimate of P and thus choose f .
Specifically, there are t observations, each a pair (x, y) consisting of a vector of observables
x and the corresponding outcome y. Past data about the relationship between observables and
outcomes is represented by a sample:

st = {
(x1, y1), . . . , (xt , yt )

}
.

5 As currently written, X is not directly payoff relevant, it is only indirectly relevant via the inference that can be drawn
about Y . Extending the model to include payoff relevant X comes at only a notational cost.
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Let St denote the (finite) set of all such samples. We assume that samples are i.i.d. draws from
the unknown P , i.e. St is a draw according to P t .

Our decision maker’s problem is to choose a procedure which selects a decision rule f based
on the observed sample st . Examples of such procedures may be helpful in fixing ideas.

Example 1 (Linear regression). The space of observables X is identified with Rn, while the
space of outcomes Y and actions A are both identified with the real line R. When the decision
maker chooses action a, if the outcome y is realized, he receives a payoff of:

u(y, a) = −(y − a)2.

A procedure used in practice for this sort of problem is linear regression. In our notation, a re-
gression model is identified with a subset of regressors I ⊆ {1,2, . . . , n}:

FI =
{
f

∣∣∣ f (x) =
∑
i∈I

bixi for some b ∈RI

}
,

where bi and xi represent the ith coordinate of the vectors b and x, respectively. Given a re-
gression model FI and sample st = {(x1, y1), . . . , (xt , yt )}, the decision maker selects f̂ ∈ FI

according to the sum of least squares criterion:

f̂ ∈ arg max
f ∈FI

t∑
j=1

−(
yj − f (xj )

)2
.

Example 2 (Categorization). The decision maker categorizes the space of observables, X, into
K styles according to a categorization map

κ : X → {1,2, . . . ,K}.
If an instance x is categorized as κ(x), the decision maker takes an action that depends only on
the category κ(x), and not on x itself. A categorization map κ defines the model:

Fκ = {
f

∣∣ f = g ◦ κ, for some function g : {1, . . . ,K} → A
}
.

The decision maker then selects the best decision rule f̂ from Fκ based on the sample st :

f̂ ∈ arg max
f ∈Fκ

t∑
j=1

u
(
yj , f (xj )

)
.

3. The decision procedure

In this paper we study a simple two-stage decision procedure that generalizes the examples
we discussed above:

1. Model-selection stage: Select a ‘model,’ or ‘decision frame’ F ⊆ F consisting of a set of
decision rules.

2. Inference stage: A rule fF
st in F is selected based on the observed sample st .

The main focus in this paper is the form of models selected in the model selection stage, i.e. what
sort of F ⊆ F’s are chosen by a decision maker, given the inference stage that follows.
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3.1. A frequentist inference stage

If the true distribution P is known, then the solution to our decision maker’s problem is
simple—he should select f �

P where

f �
P ∈ argmax

f ∈F
EP f.

Our decision maker does not ‘know’ this true distribution P . The empirical distribution at a
sample st assigns to each event E ⊂ X × Y its relative frequency in the sample

ν
(
st

)
(E) ≡ #{i: (xi, yi) ∈ E}

t
.

The empirical performance of a rule f is its average payoff over the sample

Eν(st )f ≡ 1

t

t∑
i=1

u
(
yi, f (xi)

)
.

Instead of evaluating the expectations with respect to the unknown P , the decision maker uses
the sample distribution ν(st ). A frequentist decision procedure is a function:

ϕ : St × 2F → F

such that: ϕ
(
st ;F) ∈ argmax

f ∈F
Eν(st )f.

That is, ϕ selects the best rule using the sample distribution ν(st ) subject to the constraint that
the selected rule must be in the selected model F .

3.2. Model selection stage objectives

Our decision maker’s objectives are to pick a frame F to minimize the difference in expected
utility between f �

P and ϕ(st ,F). Motivated by robustness, he takes a worst case over all proba-
bility distributions P ∈ �(X×Y). Formally, given any frame F , the decision maker is concerned
with:

V (F) = sup
P

∫
st

(
EP f �

P − EP ϕ
(
st ,F

))
dP t . (1)

He would like to pick a frame F to make V (F) as small as possible. To help interpret (1), it will
be helpful to re-arrange the terms:

V (F) = sup
P

[(
EP f �

P − max
f ∈F

EP f
)

︸ ︷︷ ︸
(1)

+
∫
st

(
max
f ∈F

EP f − EP ϕ
(
st ,F

))
dP t

︸ ︷︷ ︸
(2)

]
. (2)

In words, picking F requires the decision maker to balance two conflicting criteria:

Term 1: We will refer to this term as the fit of a frame F . Note that this improves as F becomes
large (in the sense of inclusion). In the extreme case where F = F, we trivially have
EP f ∗ = maxf ∈F EP f for each P , and therefore this Term 1 equals zero.
P
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Term 2: We will refer to this as the ‘over-fit.’ Roughly speaking, the inference stage will in
general select a decision rule that is different (and worse performing) than the best
decision rule in F if P was known. A ‘large’ (in a sense we make precise shortly) F
relative to P exacerbates the problem of over-fitting. For instance, when F = F, the rule
with the best empirical fit, f ∗

st , will track the data perfectly and its performance need
not be close to EP f �

P .

For a given set of rules F ⊂ F, define:

�t(F) ≡ sup
P

∫
st

sup
f ∈F

|Eν(st )f − EP f |dP t . (3)

The observation below shows that �t(F) directly defines the overfit of a class F (we defer the
proof to Appendix B).

Observation 1. If �t(F) � ε for a model F , then the overfit of the class:∫
st

(
max
f ∈F

EP f − EP ϕ
(
st ,F

))
dP t � 2ε.

Therefore if �t(F) is large, the empirical performance of f is a poor estimate of its true
performance and the selected rule from F may be much worse than the true best rule in F .

Since both Term 1 and Term 2 are positive, picking an F with small overfit is a necessary
condition to minimize V (F). The analytical properties of Term 1 depend on the particular deci-
sion problem, while Term 2 can be analyzed more generally as we describe below. Therefore, we
focus on properties of F such that their overfit is small.

Definition 1. A model or decision frame is a pair (F, ε) where F ⊆ F and ε > 0 such that
�t(F) � ε. Given a frame, an integer t , and data st , the decision maker selects the decision rule
ϕ(st ,F).

The decision maker’s frame (F, ε) determines how inferences are drawn from past evidence.
The set F represents the set of rules or patterns he considers, while the parameter ε represents
the desire to avoid overfitting. We use the theory of uniform learning, originating with Vapnik
and Chervonenkis [32], to characterize such models.6

Before we discuss the sorts of F ’s that perform well for a decision maker, it is useful to build
some intuition for why some restriction is necessary. The following subsection suggests why a
model of the set of all possible rules, i.e. F = F, can perform badly.

3.3. Naïve empiricism and over-fitting

The empirically estimated performance of a rule f will typically differ from its true perfor-
mance due to sampling error. A consequence of the law of large numbers is that for a large

6 For a brief, self-contained account, see Al-Najjar [1]. For textbook expositions, see Vapnik [31] or Devroye et al. [8].
See Harman and Kulkarni [12] (from which Fig. 1 was taken) for an informal introduction as well as connections to
learning and induction.
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Fig. 1. Over-fitting.

enough sample size t , the empirical estimate of the performance of any single f is close to its
true performance, with high probability, for any probability distribution P and rule f . More
precisely, for every ε > 0 there exists a sample size t̄ such that7:

sup
f ∈F

�t(f ) < ε, ∀t � t̄ . (4)

A “naïve” decision maker selects the rule that best fits the data without any constraints on F.
A flawed argument for this procedure is as follows: when (4) holds, the empirical performance
of each rule f is close to its true performance for any P . In particular, the empirical performance
of ϕ(·;F) is close to its true performance, and therefore ϕ(st ;F) performs nearly as well as the
optimal rule f �

P for any P . However this argument erroneously switches the order of limits, that
is, it assumes that

sup
F

sup
P

∫
st

|Eν(st )f − EP f |dP t = sup
P

sup
F

∫
st

|Eν(st )f − EP f |dP t ,

which is not true in general. Indeed, a bound on the right hand side is needed to conclude the
(approximate) optimality of ϕ(·;F). For this, one needs theorems from the literature on uniform
learning, also known as uniform laws of large numbers. An example may be helpful.

Example (Regression revisited). In the context of regression (Example 1) a decision maker who
is free to choose any continuous regression curve is guaranteed to find one that fits perfectly—
however, this choice ‘over-fits’ the data. Fig. 1 illustrates this.

This problem may be circumvented by both restricting attention to a ‘small’ set of explana-
tory variables, i.e. ignoring some components of X and a small class of functions e.g. linear
in the chosen explanatory variables. The intuition we develop in this paper extends beyond lin-
ear regression because we do not impose any a priori order or any other structure on the sets
X,Y and A, or make any assumptions regarding P .

The essence of our account of coarse decision making is this: when data is scarce relative to
the set of feasible rules, the decision maker corrects for the problem of over-fitting by restricting
his choice: in the case of linear regression, one may reject general continuous curves in favor of
the smaller class Flinear.

4. Categorization

We focus on categorization as an important illustration of coarse decision making. Many of
the intuitions and results we develop extend to other, more general settings.

7 The finiteness of X,Y and A are sufficient for this. In general, this would require suitable regularity conditions on u.
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4.1. A formal model of categorization

Definition 2. A decision frame (Fκ , ε) is a categorization frame if there is

κ : X → {1, . . . ,K}
such that Fκ = {

f
∣∣ f = g ◦ κ, for some function g : {1, . . . ,K} → A

}
.

In this case, refer to κ as the categorization function, and write Xk = κ−1(k) to denote the kth
category.

In a categorization frame, the decision maker first classifies the observables into one of K

categories, then takes an action that depends only on the category. The remainder of this section
discusses some implications of our model of categorization and contrasts them with the literature.

4.2. Why do we see coarse categories?

Every decision problem admits a trivial categorization, namely one where each x is its own
category (that is, K = |X| and κ(x) = x). The psychology literature cited earlier and the eco-
nomic and finance uses of this concept (e.g., Barberis and Shleifer [2], and Hong et al. [15])
suggest that observed behavior exhibits reliance on few, coarse categories.

The following result shows that a decision maker who uses a categorization frame, and is
concerned with robustness and overfitting, will necessarily rely on a ‘small’ number of categories,
in a sense made precise in the theorem.

Proposition 1. Suppose the decision maker has t samples, and restricts attention to models F
with overfit at most ε > 0, i.e. �t(F) � ε. Then, there are two functions k+(t, ε) and k−(t, ε)

such that:

1. Categorization must be coarse: F can have at most k+(t, ε) categories, i.e. for every cate-
gorization function κ with K categories

�t(Fκ ) < ε ⇒ K � k+(t, ε). (5)

2. Coarse categorization is possible: Any F with k−(t, ε) categories has small overfit, i.e. for
any categorization rule κ with K = k−(t, ε), we have that:

�t(Fκ )� ε. (6)

Simple comparative statics follow easily from the proof.

4.2.1. How does categorization depend on data?

Corollary 1. Fixing ε, κ+(t, ε) and κ−(t, ε) are increasing in t .

We leave the details to Appendix B—see Section B.3 for details, and (11) for the formal
inequality.

However, it is useful to build some intuition for how large the upper bound is to be sure that
our statements are not generally vacuous. Fixing the particular decision problem (i.e. X,Y,A
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and u) and the level of overfit ε the decision maker is willing to tolerate, one can show that κ+
grows linearly in the number of data points available t , i.e. κ+(t, ε) = O(t).

Our theorems therefore have bite when the cardinality of the space of observables is larger
than the number available sample data points. In a lot of ‘real-life’ decision problems, this is
easily the case—for instance a health study that encodes medically relevant characteristics of
individuals (sex, age, height, weight, basic vitals and medical history) already has a state space
cardinality that is orders of magnitude larger than the population of the earth! Some categoriza-
tion is therefore necessary.

The question of identifying useful constraints on similarity has a long history in several fields
(see Section 5.1)—a common theme is that the unconstrained use of similarity makes this concept
all but useless.8 The framework of this paper suggests a reason why.

4.2.2. How does categorization depend on overfit?
A related comparative static further clarifies the trade off between the amount of overfit ε the

decision maker is willing to tolerate and the amount of sample data available.

Corollary 2. Fixing the amount of data t , κ+(t, ε) and κ−(t, ε) are increasing in ε.

In words, for the same amount of sample data available to the decision maker, he can consider
models with more categories if he is willing to accept more overfit ε.

4.3. Categorization in high-stake decisions

Our account of coarse categorization in terms of learning and the desire to avoid over-fitting
is but one possible explanation. The more popular explanation in the literature is that it is the
result of cognitive and computational limitations: decision makers coarsely categorize because
they lack the sophistication or resources to carry out unrestrictedly fine contingent planning.9 Do
these explanations lead to observable differences in behavior?

To answer this question, we consider the comparative statics of increasing the stakes in making
the right decision while keeping other components of the decision problem fixed. Consider a
forecasting problem with X = Y = A where the decision maker observes an instance x and
receives a payoff u(y, y′) that depends on his forecast y′ = a(x) and the realized value y. Define
the payoff function:

uθ

(
y, y′) =

{
0, y = y′,
−θ, otherwise.

The parameter θ � 1 reflects the stakes involved, with θ = 1 serving as a useful benchmark.
As θ increases, the decision maker is penalized more heavily for an incorrect forecast. How

8 In their seminal paper on the subject, Murphy and Medin [19] note that “Suppose that one is to list the attributes
that plums and lawnmowers have in common in order to judge their similarity. It is easy to see that the list could be
infinite: Both weigh less than 10,000 kg (and less than 10,001 kg, . . . ), both did not exist 10,000,000 years ago (and
10,000,001 years ago, . . . ), both cannot hear well, both can be dropped, both take up space, and so on. Likewise, the list
of differences could be infinite.”

9 This argument has a long history in the study of bounded rationality. It appears in the classic works of Simon [27,28]
where he appeals to computational limitations to explain the prevalence of rules of thumb, satisficing, and other behaviors
that could be thought of as evidence of coarse decision making. Dye [10] and many others explicitly model computational
costs to explain coarse contracts.
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does the heightened incentive to get it right impact categorization? A decision maker driven
by computational, cognitive, or memory constraints will devote greater efforts to overcome these
limitations as the stake he has in taking the correct action increases. As the stakes increase, cogni-
tive costs become increasingly trivial, leading to progressively finer decision rules. For example,
see Dye [10], where a unit cost is paid for each computation step. In our model, the theorem
shows that the decision maker uses coarse categories and rules of thumb even in important deci-
sions with high stakes.10

Proposition 2. For any ε (the maximum amount of empirical discrepancy the decision maker
will tolerate) and t , let κ+

θ (ε, t) be the maximum number of categories the decision maker can
have in classification problem with payoff uθ if he has t samples and will accept an empirical
discrepancy of ε. Then

κ+
θ (ε, t) = κ+

1

(
ε

θ
, t

)
.

Therefore, κ+
θ (ε, t) is decreasing in θ .

In words, the maximum number of categories decreases as the penalty for making the wrong
decision increases, ceteris paribus. The level of coarseness depends on ε

θ
, i.e. the ratio of the

empirical discrepancy the decision maker will tolerate and the ‘stakes’ of the problem.
There is little doubt that cognitive and computational limitations are real and play an impor-

tant role in behavior. The main takeaway from this section is that a learning based model may
provide opposite comparative statics to a cognitive limitations based model of coarse decision
making. Where higher stakes in the latter give the agent incentives to spend more resources to
‘get it right,’ in the former class of models they may imply coarsening to avoid ‘getting it wrong.’
We think this difference is worth noting. As we highlighted earlier, there are several large stakes
decisions where ‘simple rules’ are observed. Understanding whether limited data or limited cog-
nition/computation is the relevant ‘binding constraint’ would help us understand how an agent
should spend resources to improve the quality of his decision making.

We finally note that higher stakes may have indirect effects in a learning model. If we expand
our model to include costly data gathering then a decision maker facing decisions where the
stakes are high may choose to gather more data. The total effect on the number of categories is
then ambiguous.

4.4. Merging categories

The categorization model presented in Section 4.1 has formal similarities to models of incom-
plete information: The categorization function κ defines an information partition, with Fκ being
the set of all rules measurable with respect to this information. Many models of limited cognition
use partitions to represent analogies, similarity, memory limitations or, more generally, decision
makers’ coarse understanding of the environment.

A natural question is whether partitional models of limited cognition reduce to standard
Bayesian models with limited information. In this section, we illustrate how our categorization

10 Phenomena such as style investing and the use of balanced scorecards by firms are clearly instances of coarse decision
making that affect ‘large stakes’ decisions.
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frames substantively differ in at least one important respect. Consider a standard incomplete in-
formation setting where two individuals are endowed with distinct information partitions S1,S2
of X. If these individuals pool their information, the resulting information structure is the com-
mon refinement S1 ∨ S2. Absent commitment issues or other strategic motives, each individual
weakly prefers the finer information partition S1 ∨ S2. More information means more flexibility
of choice, and flexibility cannot hurt—and usually helps.

Consider now two individuals who use categorization frames κ1, κ2, with corresponding par-
titions Q1,Q2. In contrast with information partitions, making decisions based on the pooled
categorization Q1 ∨ Q2 can be harmful. Specifically, there is a distribution P where the first
decision maker’s expected payoff under Q1 ∨ Q2 is lower than his expected payoff under the
coarser initial partition Q1.

To illustrate, consider a forecasting problem with X = {x1, . . . , xN }, two outcomes A = Y =
{0,1}, and u(x, a) = 1 if a = x and 0 otherwise. For a pair of categorization frames κ1, κ2, define
κ1 ∨ κ2 to be the frame that maps each instance x to the element of Q1 ∨Q2 that contains it.

Proposition 3. There exists a function n−(t), such that for every forecasting problem with |X| =
N > n−(t) there exists a probability distribution P and categorization frames κ1, κ2 such that:

EP ϕ
(
st , κ1

)
> EP ϕ

(
st , κ1 ∨ κ2

)
,

i.e. the decision maker’s expected payoff from the best fitting act with the coarser partition κ1 is
larger than his payoff from the finer partition κ1 ∨ κ2.

In words, the decision maker’s expected utility at P is larger under the coarser set of rules.
To be clear, the claim of Proposition 3 is stronger than saying that the decision maker is better
off not refining under the decision criterion defined in this paper. That already follows from
Theorem 1. This proposition asserts that even the decision maker’s expected payoff is better
when not refining. If partitions represented information sets, then refining the set of decision
rules makes the decision maker at least weakly better off for every probability distribution. This
also distinguishes our model from bounded rationality accounts of categorization where finer
categories are unambiguously better.

The intuition for this result is that a decision maker with partition Q will pick action 0 for
some x in partition element Q if the sample has more 0’s than 1’s in that partition element. If
Q is ‘coarse,’ then with high probability, the decision maker will get several data points for each
partition element, and pick the best average action for each. Suppose instead Q is fine, i.e. it
has several partition elements. In this case, with high probability there will be many partition
elements with few observations. This increases the likelihood of taking the wrong action due to
sampling error. The proof of the proposition constructs probability distributions and categoriza-
tion frames where the decision maker is worse off in expectation.

5. Discussion and conclusion

In this paper, we presented a simple alternate explanation of coarse decision making, i.e. that
it arises from the decision maker faced with limited data restricting his model to avoid overfitting.
The resulting implications and comparative statics are different from cognitive and computational
limitation based explanations that are prevalent in the literature. We would like to close with two
short notes.
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First, for the interested reader, we include a brief literature review in Section 5.1. This goes
over some of the prominent work on coarse decision making.

Second, we should note that our theorems provide no guidance on what frame the decision
maker should actually pick, only that it should not be too fine (or too coarse) as made precise
in Proposition 1. To actually ‘apply’ this model, additional criteria are required. This is similar
to how, in applications, Bayesian decision makers are modeled with a ‘common prior’ or ‘ra-
tional expectations.’ We conclude in Section 5.2 with an exploratory discussion of the converse
possibility—using coarse decision making to inform prior selection.

5.1. Literatures on coarse decision making

As we suggested in the introduction, there is a vast literature in psychology, economics and
finance that documents and studies behavior that fits within our definition of coarse decision mak-
ing. While a comprehensive review is outside the purview of this paper, we provide a sampling
of relevant works from these literatures.

Categorization in psychology: Categorization is a decision procedure in which problems or
situations are grouped into categories and decisions are made based on the categories, rather
than the original problem or situation. Categorization is central in cognition psychology, for
example see the collection of Vosniadou and Ortony [33], and the papers by Reed [22], Rosch
and Lloyd [24], Chi et al. [5], Rips [23], Murphy and Medin [19], Goldstone [11], among many
others.

Style investing in finance: In a pioneering work, Sharpe [26] showed that 90% of the variation
in the return on mutual funds can be explained by investors basing their investment strategies on
asset categories, or ‘styles.’ See Bernstein [4] and Dimson and Nagel [9] for a historical overview,
and Barberis and Shleifer [2] for a model that uses style investing patterns to explain movements
of asset prices.

Investing paradigms and model revision: In Hong et al. [15] asset returns are governed by a
multi-variate process but the decision maker is restricted to using a univariate investing rule.

Rational inattention: Sims [29] proposed a model where limited information processing ca-
pability results in decision makers paying attention to only a subset of the available information.
It has been applied to explain price and wage rigidities.

Optimal categorization: The recent paper of Mohlin [18] studies a model similar to ours,
where agent picks a categorization of observable variables to make a prediction about an un-
observed variables. He studies the design of rules that minimize expected error for a known
probability distribution, trading off bias (from categorizing different observables together) with
variance (limited sample size within category). Cremer et al. [6] study the design of an optimal
language with a limited number of ‘words’ or ‘codes.’

Coarse decision making is also related to rules of thumb and other similar ideas, such as
decision heuristics, routines, and analogies. See Tversky and Kahneman [30], Nelson and Win-
ter [20], and Samuelson [25], among others.

5.2. Coarse decision making as a prior selection criterion

A Bayesian decision maker in our setting is one with a prior belief π over P with choice rule
given by expected utility maximization:
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β
(
st , π

) ∈ argmax
f ∈F

∫
P

[EP f ]dπ
(
P |st

)
.

Here π(·|st ) is the posterior over P given the sample st . The term EP f is the same as in the
frequentist rule ϕ, but the Bayesian uses the posterior π(·|st ) to weigh different P ’s.

Bayesian decision making is founded on consistency conditions on the decision maker’s pref-
erence. These yield: (1) a utility u over consequences; (2) a belief π over parameters, and (3) the
expected utility criterion to combine the two. The consistency conditions give no guidance for
what the belief π ‘should be,’ only that there must be such a belief. In practice, economic and
statistical models impose considerable structure on Bayesian beliefs based on considerations of
tractability, simplicity, or other intuitive desiderata.

Concerns about overfitting can provide a systematic way to select priors. Given a decision
frame F , define PF to be the set of all probability distributions P such that β(st ,P ) ∈ F . That
is, PF is all the distributions that would lead a decision maker, Bayesian or not, to optimally
select a rule F . A Bayesian with prior π whose support is PF will also choose a rule in F ,
so β(st ,π) ∈ F . Well-known results in Bayesian statistics guarantee, under general conditions,
that one can find a prior π such that EP β(st ,π) � EP ϕ(st ,F) for every P ∈ PF .11 That is,
the Bayesian procedure with prior β does weakly better than the frequentist procedure ϕ at each
distribution in PF .

When we apply the above to a set of rules with �t(F) < ε, the behavior of a Bayesian with
these beliefs will, by construction, display coarse decision making. A Bayesian’s desire for sim-
plicity or coarseness is now the result of his selection of a ‘simple’ prior. Our framework may
therefore be viewed as providing a motivation for selecting priors with particular properties;
namely those that put most of the mass on the sets of the form P ∈PF where �t(F) < ε.

Two points should be emphasized. First, the improvement achieved by the Bayesian procedure
over ϕ is marginal: by design, we have EP ϕ(st ,F) > EP β(st ,P ) − ε for all P , because the
robust frequentist rule was selected to be (approximately) optimal for all distributions. For this
reason, we shall continue using the simpler procedure ϕ, even though it can be (marginally)
improved on by some Bayesian procedure. Second, mitigating overfitting as a criterion for prior
selection is not inconsistent with the foundations of Bayesian theory (nor is it implied by these
foundations). The motivation we provided for this criterion reflects classical statistics concerns
(e.g., regression).

Appendix A. Statistical learning theory

Readers familiar with statistical learning theory can skip this section without any loss. For
the reader’s convenience, we collect here key definitions and theorems needed for our results.
There are excellent textbook accounts for readers who wish to see a more thorough treatment;
for example, Vapnik [31] or Devroye et al. [8].

Consider a set X and a set of subsets of X, C ⊆ 2X . We say that C shatters (x1, x2, . . . , xd) ∈
Xd if for each b = (b1, . . . , bd) ∈ {0,1}d there exists Cb ∈ C such that:

xi ∈ Cb ⇔ bi = 1.

Therefore, C shatters (x1, x2, . . . , xd) if each subset can be contained in some member of C.

11 This type of results is known as complete class theorems; see Berger [3].
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Definition 3. The Vapnik–Chervonenkis dimension of C, V C(C) = d if there exists (x1, x2,

. . . , xd) ∈ Xd such that C shatters (x1, x2, . . . , xd), and there does not exist any (x1, x2, . . . ,

xd, xd+1) ∈ Xd+1 such that C shatters (x1, x2, . . . , xd, xd+1).
In other words, the VC dimension of C is the length of the longest string it can shatter. If C

can shatter strings of arbitrary length, we say its VC-dimension is infinity.

A central result in statistical learning theory is that a class of events C is uniformly learnable
if and only if it has finite VC-dimension.

Theorem 1. Consider a set X, and C ⊆ 2X . Suppose the VC dimension of C is d . Then for any
ε > 0, and any integer t > 0:

sup
P

P t
{
st : sup

A∈C

∣∣ν(
st

)
(A) − P(A)

∣∣ > ε
}
� K tde−tε2/32, (7)

where K is a universal constant.12

In order to see how this impacts our setting, consider the simplest possible version of our
model-X is some finite set, Y = A = {0,1} and

u(y, a) =
{

1 if y = a,

0 otherwise.

The set of all possible decision rules F = {f | f : X → {0,1}}, and suppose the decision
maker considers F ⊆ F. For any f ∈F , and any true probability distribution P :

EP u
(
y,f (x)

) = P
((

f −1(0) × {0}) ∪ (
f −1(1) × {1})).

Define X = X×{0,1} and C = {A | A = (f −1(0)×{0})∪(f −1(1)×{1}), f ∈F}. Therefore,
it follows from Theorem 1 (see also Corollary 12.1 of Devroye et al. [8]):

�t(F) � 16

√
VC log t + 4

2t
.

Next we turn to Pollard’s pseudo-dimension. In the case of a more general Y,A,u, the Vapnik–
Chervonenkis bounds do not directly apply.

We will use Pollard’s pseudo dimension, sometimes referred to in the literature as the Pol-
lard dimension (Pollard [21]). Let F be some set of functions from X to R. We say that F
pseudo-shatters a string (x1, x2, . . . , xd) if there exists c = (c1, . . . , cd) ∈ Rd such that for each
b = (b1, . . . , bd) ∈ {0,1}d , there exists fb ∈F satisfying13:

∀1 � i � d: fb(xi) > ci iff bi = 1.

Definition 4. The pseudo-dimension of F = d if there exists (x1, x2, . . . , xd) ∈ X d such that
F pseudo-shatters (x1, x2, . . . , xd), and there does not exist any (x1, x2, . . . , xd, xd+1) ∈ X d+1

such that F pseudo-shatters (x1, x2, . . . , xd, xd+1).

12 Tighter bounds are available, but the above version is sufficient for our purposes, see also Devroye et al. [8].
13 The literature uses the term shatter in this setting as well. We refer to the concept as pseudo-shattering to remove any
ambiguity.
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In other words, the pseudo-dimension of F is the length of the longest string it can pseudo-
shatter. If F can pseudo-shatter strings of arbitrary length, we say its pseudo-dimension is
infinity.

The following inequality is Corollary 2 of Haussler [13] restated in our notation:

Theorem 2. Consider a set of real-valued functions F of bounded range [0,M]. Suppose the
pseudo dimension of F is d . Then for any ε > 0, and any integer t > 0:

sup
P

P t
{
st : sup

f ∈F
|Eν(st )f − EP f | > ε

}
� 8

(
32eM

ε
ln

(
32eM

ε

))d

e−ε2t/64M2
. (8)

Appendix B. Proofs

B.1. Observation 1

Proof of Observation 1. To simplify notation define fF
P as the best decision rule in F if P was

known, i.e. fF
P = arg maxf ∈F EP f . Note that:∫

st

(
max
f ∈F

EP f − EP ϕ
(
st ,F

))
dP t

=
∫
st

(
EP fF

P − EP ϕ
(
st ,F

))
dP t

=
∫
st

(
EP fF

P − Eν(st )f
F
p︸ ︷︷ ︸

(1)

+Eν(st )f
F
p − Eν(st )ϕ

(
st ,F

)
︸ ︷︷ ︸

(2)

+ Eν(st )ϕ
(
st ,F

) − EP ϕ
(
st ,F

)︸ ︷︷ ︸
(3)

)
dP t

� ε + 0 + ε = 2ε.

However, terms (1) and (3) are weakly less than ε from the definition of �t(F), while
term (2)� 0 by the definition of ϕ. Summing together, we have the required conclusion. �
B.2. Preliminaries

In preparations for the proofs, we will need a couple of preliminary lemmas.

Lemma 1. Suppose a non-negative random variable Z satisfies

∀ε > 0: P(Z > ε) � cε−2de−kε2
,

for some c, d, k � 1, ln ck > 1. Then:

E(Z) �
√

d ln ck + 1

k
.
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Proof. Since, for all ε > 0,

P(Z > ε)� cε−2de−kε2
,

we have that:

E
(
Z2) =

∞∫
0

P
(
Z2 > t

)
dt

=
u∫

0

P
(
Z2 > t

)
dt +

∞∫
u

P
(
Z2 > t

)
dt ∀u > 0

� u +
∞∫

u

P
(
Z2 > t

)
dt

� u +
∞∫

u

ct−de−kt dt

� u + cu−d

∞∫
u

e−kt dt

= u + u−d c

k
e−uk. (9)

Plugging u = d ln ck
k

into inequality (9), we have:

E
(
Z2) � d ln ck

k
+

(
d ln ck

k

)−d
c

k

1

(ck)d

= d ln ck

k
+ 1

k

1

(d ln ck)dcd−1

� d ln ck + 1

k
(ln ck � 1).

Finally note that E(Z) �
√
E(Z2) by Jensen’s inequality, giving us the desired result. �

Lemma 2. Suppose a set of real valued functions F is such that for each f ∈ F , range(f ) ⊆
[0,1]. If the pseudo dimension of F is less than d , then:

�t(F) � 8

√
d2 ln 32e + d ln te

8

t
. (10)

Proof. By Pollard’s inequality, (8):

sup
P

P t
{
s: sup

f ∈F
|Eν(st )f − EP f | > ε

}
� 8

(
32e

ε
ln

(
32e

ε

))d

e− ε2 t
64

� 8

(
32e

)2d

e− ε2 t
64
ε
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= (
8(32e)2d

)
ε−2de− ε2 t

64 .

Then (10) follows from Lemma 1. �
Next, recall that Pollard’s pseudo-dimension applies to real-valued functions. Given the de-

cision maker’s utility function u, any decision rule f : X → A induces a real valued function
uf : X × Y → R, uf (x, y) = u(y,f (x)); and therefore F induces a set of real valued func-
tions UF .

In the sequel, given a utility function u, we shall abuse notation by referring the pseudo di-
mension etc. of F directly, instead of the induced set of real valued functions UF .

Lemma 3. Let κ : X → {1, . . . ,K} be a categorization rule, and Fκ be the associated catego-
rization frame. For any utility function u : Y × A → R, the pseudo dimension of Fκ is at most
K|Y |.

Proof. We need to show that there is no string in (X × Y)K|Y |+1 that Fκ can pseudo-shatter. We
show that for any 1 � k � K , Fκ can pseudo-shatter at most |Y | elements in (κ−1(k) × Y) (the
desired lemma clearly follows).

So suppose not. Fix k, and consider any |Y | + 1 elements (xi, yi) ∈ (κ−1(k) × Y), i =
1, . . . , |Y |+ 1. Let the associated cutoffs be ci ∈R, i = 1, . . . , |Y |+ 1, without loss of generality
let c1 � c2 � · · ·� c|Y |+1.

By the Pigeon Hole Principle, there must be two elements (xi, yi), (xj , yj ), i < j such that
yi = yj . However, since xi, xj ∈ κ−1(k), f (xi) = f (xj ) for all f ∈ Fκ . Hence, uf (xi, yi) =
uf (xj , yj ) for all f ∈ Fκ . Clearly, there cannot exist f ∈ Fκ such that uf (xj , yj ) > cj and
uf (xi, yi) � ci , and therefore Fκ cannot shatter it. �

We can now proceed to the proofs of the theorems in the paper.

B.3. Proposition 1

Proof of Proposition 1. We first prove the former part, i.e. (5). Note that since there are more
than 2 actions and u is a real valued function, VC-theory does not directly apply. Our first step is
to effectively reduce the number of outcomes to 2.

Let δ = miny �=y′ |u(y, y) − u(y, y′)| and let y1, y2 = arg miny �=y′ δ. Consider the subset of
probability distributions Pκ,y1,y2 ⊆ �(X × Y), such that ∀P ∈ Pκ,y1,y2 :

∀k ∈ {1, . . . ,K}: P
(
y1|κ−1(k)

) = 1 ∨ P
(
y2|κ−1(k)

) = 1.

In words, the set Pκ,y1,y2 is the set of distributions such that the outcome y can be only one
of y1 and y2. Further, y depends only on the category x falls under (and not on x itself), and is
deterministic conditional on the category of x.

Clearly for every P ∈ Pκ,y1,y2 , there exists a rule in Fκ that is the best rule in F for P . We
now use Theorem 14.1 of Devroye et al. [8]. In our notation, it states that14:

sup
P∈Pκ,y1,y2

∫
st

sup
f ∈Fκ

|Eν(st )f − EP f |dP t � (K − 1)δ

2et

(
1 − 1

t

)
.

14 Note that the VC-dimension of the class of categorization rules with K categories is K .
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However,

�t(Fκ ) = sup
P

∫
st

sup
f ∈Fκ

|Eν(st )f − EP f |dP t

� sup
P∈Pκ,y1,y2

∫
st

sup
f ∈Fκ

|Eν(st )f − EP f |dP t

� (K − 1)δ

2et

(
1 − 1

t

)
.

Therefore for �t(Fκ ) � ε, it must be that

K � 2et2

(t − 1)δ
ε + 1. (11)

(5) follows by setting k+ to the right hand side of the above inequality.
To see the latter part, i.e. (6), by Lemma 3, the pseudo-dimension of a categorization-based

rule Fκ with K partitions is at most K|Y |. Therefore, applying Lemma 2,

�t(Fκ )� 8

√
(K|Y |)2 ln 32e + K|Y | ln te

8

t
.

Therefore for any ε and any k−, there exists t large enough such that �t(Fκ ) < ε when κ has at
most k− partitions. �
B.4. Proposition 2

Proof of Proposition 2. From the proof of Proposition 1, we see that

k+(ε, t) = 2et2

(t − 1)δ
ε + 1.

From the definition of uθ it follows that δ = θ . Therefore

k+
θ (ε, t) = 2et2

(t − 1)

ε

θ
+ 1.

As a result k+
θ (ε, t) is decreasing in θ . Further, it follows from observation that k+

θ (ε, t) =
k+

1 ( ε
θ
, t). �

B.5. Proposition 3

Proof of Proposition 3. The proof follows by constructing a particular categorization problem,
and a distribution P such that even the expected payoff of a decision maker following our deci-
sion procedure will be worse with the finer partitional rule.

Consider a partition X into k sub-blocks of N
k

elements each, X1,X2, . . . ,Xk . Partition Q1 is
the k-element partition:

Q1 = {X1,X2,X3, . . . ,Xk},
with κ1 as the corresponding decision frame.
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Define Q2 as the finest possible partition of X, i.e. each partition element is a single element
in X, with κ2 as the corresponding decision frame. Clearly:

Q1 ∨Q2 =Q2 = {{x1}, {x2}, . . . , {xN }}.
Finally to specify the distribution P , it is enough to define the marginal distribution on X

and the conditional distribution on Y for each x ∈ X. We define P as follows: the marginal
distribution on X is uniform, i.e. any x occurs with probability 1

N
. The conditional distribution

on Y is specified thus: regardless of x, P(y = 1) = p > 1
2 .

As a result, the optimal rule if the decision maker knew P is to always take the action a = 1.
This rule has an expected payoff of p.

Firstly, note that by Theorem 1, the decision maker’s payoff when using the decision rule
implied by the frame κ1 is such that:

EP ϕ
(
st , κ1

)
� p − 16

√
k log t + 4

2t
.

However, if the decision maker switches to the finer frame κ1 ∨ κ2, his expected payoff is

EP ϕ
(
st , κ1 ∨ κ2

)
� p

t

N
+ 1

2

N − t

N
.

To see why, note that the data contains at most t unique observables x. Since the partitions are
single elements, for every situation they have not seen in the past, he can only guess the action
to take, with expected payoff 0.5. Therefore the expected payoff is upper-bounded by the payoff
when the agent takes the ‘correct’ action for ever x he sees in the data, and guesses otherwise.
This results in the inequality above.

It follows that, fixing k and t , for N large enough, the expected payoff to an agent from
using the finer frame κ1 ∨ κ2 is strictly less than the expected payoff from using the coarser
frame κ1. �
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